Full counting statistics of nano-electromechanical systems
نویسندگان
چکیده
منابع مشابه
Full counting statistics of nano-electromechanical systems
– We develop a theory for the full counting statistics (FCS) for a class of nanoelectromechanical systems (NEMS), describable by a Markovian generalized master equation. The theory is applied to two specific examples of current interest: vibrating C60 molecules and quantum shuttles. We report a numerical evaluation of the first three cumulants for the C60-setup; for the quantum shuttle we use t...
متن کاملFull counting statistics of charge transfer in Coulomb blockade systems
Full counting statistics ~FCS! of charge transfer in mesoscopic systems has recently become a subject of significant interest, since it proves to reveal an important information about the system which can be hardly assessed by other means. While the previous research mostly addressed the FCS of noninteracting systems, the present paper deals with the FCS in the limit of strong interaction. In t...
متن کاملFull counting statistics in strongly interacting systems: non-Markovian effects.
We present a theory of full counting statistics for electron transport through interacting electron systems with non-Markovian dynamics. We illustrate our approach for transport through a single-level quantum dot and a metallic single-electron transistor to second order in the tunnel coupling, and discuss under which circumstances non-Markovian effects appear in the transport properties.
متن کاملFull counting statistics of Andreev tunneling.
We employ a single-charge counting technique to measure the full counting statistics of Andreev events in which Cooper pairs are either produced from electrons that are reflected as holes at a superconductor-normal-metal interface or annihilated in the reverse process. The full counting statistics consists of quiet periods with no Andreev processes, interrupted by the tunneling of a single elec...
متن کاملFull counting statistics of multiple Andreev reflections.
We derive the full distribution of transmitted particles through a superconducting point contact of arbitrary transparency under voltage bias. The charge transport is dominated by multiple Andreev reflections. The counting statistics is a multinomial distribution of processes, in which multiple charges ne (n=1,2,3, ...) are transferred through the contact. For zero temperature we obtain analyti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Europhysics Letters (EPL)
سال: 2005
ISSN: 0295-5075,1286-4854
DOI: 10.1209/epl/i2004-10351-x